Parameter identification for multibody systems expressed in differential-algebraic form
نویسندگان
چکیده
The ability of a multibody dynamic model to accurately predict the response of a physical system relies heavily on the use of appropriate system parameters in the mathematical model. Thus, the identification of unknown system parameters (or parameters that are known only approximately) is of fundamental importance. If experimental measurements are available for a mechanical system, the parameters in the corresponding mathematical model can be identified by minimizing the error between the model response and the experimental data. Existing work on parameter estimation using linear regression requires the elimination of the Lagrange multipliers from the dynamic equations to obtain a system of ordinary differential equations in the independent coordinates. The elimination of the Lagrange multipliers may be a nontrivial task, however, as it requires the assembly of an orthogonal complement of the Jacobian. In this work, we present an approach to identify inertial system parameters and Lagrange multipliers simultaneously by exploiting the structure of the index-3 differential-algebraic equations of motion.
منابع مشابه
Parameter Identification for Multibody Dynamic Systems
This paper presents a parameter identification technique for multibody dynamic systems, based on a nonlinear least–square optimization procedure. The procedure identifies unknown parameters in the differential–algebraic multibody system model by matching the acceleration time history of a point of interest with given data. Derivative information for the optimization process is obtained through ...
متن کاملForward Dynamics of Multibody Systems: A Recursive Hamiltonian Approach
The increase in processing power and the theoretical breakthroughs achieved in multibody systems dynamics have improved the usefulness of dynamic simulations to such an extent that the development of a whole range of applications has been triggered. Dynamic simulations are used for the analysis of mechanisms, virtual prototyping, simulators, computer animation, advanced control, etc. and are ga...
متن کاملImplicit Runge - Kutta Integration of the Equations of Multibody Dynamics in Descriptor Form
Implicit Runge-Kutta integration algorithms based on generalized coordinate partitioning are presented for numerical solution of the differential-algebraic equations of motion of multibody dynamics. Second order integration formulas are derived from well known first order Runge-Kutta integrators, defining independent generalized coordinates and their first time derivative as functions of indepe...
متن کاملImplicit Reduced Involutive Forms and Their Application to Engineering Multibody Systems
The RifSimp package in Maple transforms a set of differential equations to Reduced Involutive Form. This paper describes the application of RifSimp to challenging real-world problems found in engineering design and modelling. RifSimp was applied to sets of equations arising in the dynamical studies of multibody systems. The equations were generated by the Maple package Dynaflex, which takes as ...
متن کاملOn the adjoint formulation of design sensitivity analysis of multibody dynamics cs
Numerical methods for design sensitivity analysis of multibody dynamics are presented. An analysis of the index-3 adjoint differential-algebraic equations is conducted and stability of the integration of the adjoint differential-algebraic equations in the backward direction is proven. Stabilized index-1 formulations are presented and convergence of backward differentiation formulas is shown for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014